Advanced Features (Rust)
Advanced Features
Section titled “Advanced Features”Beyond core chat functionality, ai-lib-rust provides several advanced capabilities.
Embeddings
Section titled “Embeddings”Generate and work with vector embeddings:
use ai_lib::embeddings::{EmbeddingClient, cosine_similarity};
let client = EmbeddingClient::builder() .model("openai/text-embedding-3-small") .build() .await?;
let embeddings = client.embed(vec![ "Rust programming language", "Python programming language", "Cooking recipes",]).await?;
let sim = cosine_similarity(&embeddings[0], &embeddings[1]);println!("Rust vs Python similarity: {sim:.3}");Vector operations include cosine similarity, Euclidean distance, and dot product.
Response Caching
Section titled “Response Caching”Cache responses to reduce costs and latency:
use ai_lib::cache::{CacheManager, MemoryCache};
let cache = CacheManager::new(MemoryCache::new()) .with_ttl(Duration::from_secs(3600));
let client = AiClient::builder() .model("openai/gpt-4o") .cache(cache) .build() .await?;
// First call hits the providerlet r1 = client.chat().user("What is 2+2?").execute().await?;
// Second identical call returns cached responselet r2 = client.chat().user("What is 2+2?").execute().await?;Batch Processing
Section titled “Batch Processing”Execute multiple requests efficiently:
use ai_lib::batch::{BatchCollector, BatchExecutor};
let mut collector = BatchCollector::new();collector.add(client.chat().user("Question 1"));collector.add(client.chat().user("Question 2"));collector.add(client.chat().user("Question 3"));
let executor = BatchExecutor::new() .concurrency(5) .timeout(Duration::from_secs(30));
let results = executor.execute(collector).await;for result in results { match result { Ok(response) => println!("{}", response.content), Err(e) => eprintln!("Error: {e}"), }}Token Counting
Section titled “Token Counting”Estimate token usage and costs:
use ai_lib::tokens::{TokenCounter, ModelPricing};
let counter = TokenCounter::for_model("gpt-4o");let count = counter.count("Hello, how are you?");println!("Tokens: {count}");
let pricing = ModelPricing::from_registry("openai/gpt-4o")?;let cost = pricing.estimate(prompt_tokens, completion_tokens);println!("Estimated cost: ${cost:.4}");Plugin System
Section titled “Plugin System”Extend the client with custom plugins:
use ai_lib::plugins::{Plugin, PluginRegistry};
struct LoggingPlugin;
impl Plugin for LoggingPlugin { fn name(&self) -> &str { "logging" }
fn on_request(&self, request: &mut Request) { tracing::info!("Sending request to {}", request.model); }
fn on_response(&self, response: &Response) { tracing::info!("Got {} tokens", response.usage.total_tokens); }}
let mut registry = PluginRegistry::new();registry.register(LoggingPlugin);Guardrails
Section titled “Guardrails”Content filtering and safety:
use ai_lib::guardrails::{GuardrailsConfig, KeywordFilter};
let config = GuardrailsConfig::new() .add_filter(KeywordFilter::new(vec!["unsafe_word"])) .enable_pii_detection();Feature-Gated: Routing
Section titled “Feature-Gated: Routing”Smart model routing (enable with routing_mvp feature):
use ai_lib::routing::{CustomModelManager, ModelArray, ModelSelectionStrategy};
let manager = CustomModelManager::new() .add_model("openai/gpt-4o", weight: 0.7) .add_model("anthropic/claude-3-5-sonnet", weight: 0.3) .strategy(ModelSelectionStrategy::Weighted);Feature-Gated: Interceptors
Section titled “Feature-Gated: Interceptors”Request/response interception (enable with interceptors feature):
use ai_lib::interceptors::{InterceptorPipeline, Interceptor};
let pipeline = InterceptorPipeline::new() .add(LoggingInterceptor) .add(MetricsInterceptor) .add(AuditInterceptor);